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For the two-dimensional Coulomb gas on a lattice, at the special value of the 
dimensionless coupling constant F =  2, the grand partition function and correla- 
tions can be written in terms of the eigenvalues and eigenvectors of a block 
Toeplitz matrix. By using the semiperiodic Coulomb potential and taking the 
continuum limit in the periodic direction so as to have a set of parallel lines 
as the domain, it is shown that these eigenvalues and eigenvectors can be 
computed exactly. This allows the pressure and the correlations near a charged 
wall to be rigorously evaluated. The two-particle correlations obey a sum rule 
which implies that the state in the vicinity of the wall is a conductor. 

KEY WORDS:  Block Toeplitz matrices; two-dimensional Coublomb gas; 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

The two-dimensional (log-potential) two-component plasma on a lattice, at 
the special value of the dimensionless coupling F =  2, has been the subject 
of several recent studies. (1-4) The pioneering work of Gaudin (1) gave expres- 
sions for the grand partition function and the correlation functions in terms 
of a 2M~M2 x 2M~M2 block Toeplitz matrix. The asymptotic behavior 
of the eigenvalues and eigenvectors of the block Toeplitz matrix was 
conjectured, which allowed closed-form expressions for the pressure and 
bulk correlations to be given in the thermodynamic limit. Subsequently, 
Cornu and Jancovici (2) analyzed there results. Of particular interest to the 
present study is their observation that by taking the continuum limit in one 
direction, the closed-form expressions obtained by Gaudin simplify. 
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2 Forrester and Morrow 

In this paper, both the lattice model and the parallel lines model will 
be reconsidered, with surface charges along the boundaries in one direc- 
tion. In Section 2 a semiperiodic potential is used which allows the block 
Toeplitz matrix to be partially diagonalized, reducing the problem to that 
of obtaining the eigenvalues and eigenvectors of a 2M2 x 2M2 block 
Toeplitz matrix, where M2 is the number of rows in the nonperiodic 
direction. For M 2 = 1, the pressure and two-particle correlations are given 
exactly for the lattice model, and it is shown that except for one special 
choice of the parameters, the system is in a nonconducting phase (for F < 2 
the one-dimensional, two-component log-potential Coulomb gas a conduc- 
ting, while for F >  2 it is insulating; see, e.g., ref. 4) and this phase should 
persist for general M2 in the strip system. 

In Section 3 the parallel lines limit is considered. An exact calculation 
of the eigenvalues and eigenvectors of the corresponding 2M2 x 2M2 block 
Toeplitz matrix is given, which allows the pressure and correlations near 
the charged surface to be rigorously calculated in the thermodynamic limit. 
The correlations near the boundary obey a sum rule which indicates that 
the phase is now a conductor. The state thus changes from a nonconductor 
to a conductor as the width of the system" is taken to infinity. 

2. T H E  L A T T I C E  M O D E L  

The system to be studied is a charge neutral and symmetric mixture 
of positive and negative two-dimensional Coulomb charges. Periodic 
boundary conditions are applied in the X direction, so that a charge q with 
complex coordinate z -- x + iy and a charge q' with the complex coordinate 
z '=  x ' +  iy' interact via the potential 

V(z, z ' )= -qq '  log{ Isin ~(z - z ' ) /LL  (L/To) } (2.1) 

The two-dimensional Coulomb gas is a two-parameter system: (i) the 
dimensionless coupling 

F := q2/k B T (2.2) 

where q is the magnitude of the charges, and (ii) the dimensionless density 
~p, which is the ratio of the interparticle spacing 1/p to the "hard-core" 
diameter ~ of the particles. The hard-core or similar regularization of the 
logarithmic potential is necessary to stop the collapse of positive and 
negative charge pairs at low temperature. 

An alternative to imposing a "hard core" about each of the charges is 
to divide the domain into a grid of two sublattices, and allow each species 
to occupy one or the other of the sublattices. This choice of domain, which 
is necessary for solvability properties, is adopted in this paper. 
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2.1. Definition of the Model 

Consider a rectangle of side lengths L and W in the X and Y 
directions, respectively. Divide the rectangle into a grid of M1 x M2 sites, 
with lattice points at the coordiniates (nIL/M~, n z W / M 2 )  , ~lj= 1, 2,..., m j  
( j = l ,  2). Introduce a second interlacing lattice with coordinates 
( ( n l -  (h)L/M1, ( n 2 -  02)W/M2). Allow positive charges to occupy the first 
sublattice and negative charges of the same magnitude q to occupy the 
second. On the boundaries at y = 0 and y = W impose surface charges qa 
and - q a ,  respectively (see Fig. 1). The charges interact via the potential 
(2.1) and a charge q' at the point (x, y) within the system experiences a 
potential ~b(y) due to the surface charges where 

~(y) = ~ a q q ' ( W - 2 y )  (2.3) 

The surface charge-surface charge interaction contributes an energy 

g0-2q 2 W L  (2.4) 

to the system. 
The scaled coordinates of the kth positive charge can be written in 

complex form as 

wk = ~mk/M1 + iTrnk W/LM z (2.5) 

i i "t- + + 1  
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Fig. 1. The lattice geometry. Here ai := L/M~ and a 2 := W/M 2. The negative charges are 
restricted to the sublattice denoted by plus signs, while the positive charges are confined to 
the sublattice denoted by dots. The lower and upper boundaries contain surface charges q~ 
and - q a ,  respectively. 
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and similarly the coordinates of the kth negative charge can be written as 

zx = x(m'k - 01)/M1 + ix(n'k - 02)W/LM2 (2.6) 

, , _ <  where l~<n~, nk<~M 1 and l~<m~, mk-~M  2. With this notation the 
Boltzmann factor WNr for N particles of charge q and N particles of charge 
- q  within the system is 

WNr= ( rc/ L )NF exp [ 27crCr W ~ ( n j -  nj + (~2)/Mz - TZI'aZ WL 1 
j = l  

x IF(wj ..... WN, Zl ..... ZN)] r 

where 

F 1--[1.<j<k~N s in(wk-  wj) s in(zk-  zj) 
; =  

HN=I 1--IN= 1 sin(w~ - Zk) 

=(--1)N~N--1)/2det[sin(wi_Zk)]j,k=l,...,~. 

(2.7) 

(2.8) 

and F is given by (2.2). The equality in (2.8) follows by substituting x j=  
exp(2iwj) and yj = exp(2izj) in the Cauchy double alternant formula. 

The partition function Zur(a,  b), with site variables a(m, n) and 
b(m',n')  introduced for convenience in calculating the correlation 
functions, is given by 

N 

ZNr(a ,b )=  ~ ~ Iq [l +a(m, ,n , ) ] [ l  +b(m~,n~)]WNr (2.9) 
w~{r} z~(s} t=l 

where the sum is over the set of complex numbers rj, k and sj, k taken N at 
a time, 

(2.10) 

and 

rj. k = ztj/M 1 + 7ziWk/LM2 

sj, k = z ( j  -- ()1)/M1 + 7riW(k - 02)/LM2 (2.11 ) 

with 1 ~<j~< M1 and 1 ~<k~<M2. The corresponding grand partition 
function is 

M1 M2 

,Er(a,b)= ~ ~2NZNI.  (2.12) 
N = 0  

where ~ denotes the fugacity. 



Block Toeplitz Matrices and 2D Coulomb Gas 5 

2 .2 .  I d e n t i t i e s  a t  I" = 2 

From (2.7) and (2.8) it follows that at F =  2 the Boltzmann factor can 
be written as 

WN2= (Tr/L)2N exp I47~crW ~ (nj- nj + ~2)/M2 - 2Tcff2WL] 
j = l  

 det[ 
- (A r) O N 

where ON denote the N x  N zero matrix and 

I ] A = sin(w~- zk) j,k = ~,...,u 

If was observed by Gaudin ~1~ that if the identity (2.13) is substituted in the 
formulas (2.9) and (2.12) for the grand partition function, then the 
resulting expression is an expansion in minors of a 2M1 M2 x 2MIM2 block 
matrix. Thus 

( FO~,~2 O~,~2J)A1(a) ]~ (2.15) 22(a,b)=e 2~~ 12MIM2+~'LA2(b) 

where 

Al(a) = [~z(1 + a(1,,_Ll2))e2~~162 ~ (2.16) 
L sin(rll.12 - st'l,1 ;) J 

and 

A2(b)= [ -~( l + b--(l-~'-12))e2'~w('z~'2+~2)/M2] (2.17) 
L sin(f1, z i - gl~.12) 

In (2.15), 12M~M: denotes the 2M1 M2 • 2MIM2 identity matrix, and in the 
matrices (2.16) and (2.17) the rows are labeled by the ordered pair (ll, I2) 
while the columns are labeled by (t~, l~), where 

l<<.l~,l~<~M~ and 1<,.12, l~<...M2 (2.18) 

2.3.  Z e r o s  o f  t h e  G r a n d  P a r t i t i o n  F u n c t i o n  

From (2.15) it follows that 

MI M2 

~2(0, 0) = e - 2 ~ w L  1-I I-I 1F-[ [1 + (2(s, p, q)] (2.19) 
s = + , - -  p = l  q = l  
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where 2(s, p, q) denotes the eigenvalues of the matrix K, which is defined 
in terms of the matrix (2.16) as 

K L_(AI(O))~ o~,~:3 (2.20) 

Since K is anti-Hermitian, the eigenvalues must be pure imaginary and 
occur in complex conjugate pairs. Thus, from (2.19), the zeros of the grand 
partition function when regarded as a function of ~2 a re  all on the negative 
real axis. 

2.4. The  C o r r e l a t i o n  Funct ions 

The (dimensionless) density at the point I=  (la, Ib) on the sublattice 
containing the positive particles is given by 

1 ,~ b) 
jo + (!) = ~-.,~2(0, 0 )  6a(la, lb---------) ~2(a, (2 .21)  a=b=O 

To calculate the functional derivative, we note that each row in the 
determinant (2.15) contains a different site fugacity. The functional differen- 
tiation can thus be performed row by row to give 

1 
p + (!) = 22(0, 0) det(1 ~1M2 + ~ K) (2.22) 

where ] ~/IM2 denotes the identity matrix except for the diagonal entry in 
the row (la, Ib) of the top half, which is equal to zero. Use of (2.15) and 
some simple manipulation then gives 

p+(I)=~(+IIK(12M1M2+~K) 11+1) (2.23) 

where the notation 

(sllXl s ' t ' )  (2.24) 

denotes the element in row ! and column l '  of the block ss' (s, s' = +,  - ) 
of the matrix X. 

Similarly 

p ( l ) = f f ( - / I K ( 1 2 ~ + ~ K ) l l - t )  (2.25) 

and an analogous argument gives that the two-particle correlations can be 
expressed as 

r 1 P~2( 1, 12) = - ~2(s1111K(1 2~1M2 + ~ K) 11 $212) 

x (sz/2tK(12M=M2+~K) l l S l l l )  (2.26) 
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The matrix elements above can be expressed in terms of the eigen- 
values and eigenvectors of K. Let v(s, p, q) denote the normalized eigen- 
vector of K corresponding to the eigenvalue 2(s, p, q). Since K is 
anti-Hermitian, eigenvectors corresponding to distinct eigenvalues are 
orthogonal. If we assume that all the eigenvalues are distinct, the vectors 
1s212) and (s11~[ can be Fourier decomposed in terms of the eigenvectors. 
It is then a simple exercise to show that 

(si l l  IK(12M~M2 + ~ K)11s212) 

= s=+,- ~ Mp~=~ q=la~2~ l+~Z(s,p,q)2(s'p'q) O(s,p,q;sll~)v(s,p,q;s212) (2.27) 

where v(s, p, q; s'l) denotes the element in position s'l (s' denotes the half) 
of v(s, p, q). 

2.5. Eigenvalues and Eigenvectors of K 

From (2.16), (2.10), and (2.11), the elements of the matrix A1(0) have 
the Toeplitz structure a(h l l . t20 '  where 

ge2Xa w(l' + ~b2)/M 2 
(2.28) 

a < r ) -  L sin ~z[(l+ q~l)/Mx + iW(l'+ (~2)/LM2] 

Furthermore, they have the antiperiodicity property 

a ( l  + A~I ,F) ~- - - a ( l , l , )  (2.29) 

It thus follows that the similarity transformation 

IoUM~;20MI~II]21KIoMUM20u M2 ] 
where 

(2.30) 

U 
1 

(Ms M 2 )  I/2 
(2.31) 

diagonalizes the blocks of K labeled by 11 and l;. 
Denoting the matrix (2.30) by T, we have 

T= I o.,.~ o(L)a,l ,1] 
- Dr(k~) at~.k~ O~M( . (2.32) 
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where 

[ ~  2~il(k,- 1/2~/~, 1 D(kl) = al,12 k2e 
l 1 Al2,k2= l,.,., M2 

:= [d12_k2] 

The identity [ref. 5, Eq. (3.12)] 

e2rcil(p- I/2)/M 

l-1 sin re(l+ q~)/m 

M = e-2zi(~(p - (M + I)/2)/M 

sin rc~b 

allows the sum in (2.33) to be evaluated to give 

d,~o_ k2 = rcMl exp ( - 2rci~l(kl-(M~/-~ + 1)/2) 

{exp{2rcr(k~ - 1/2 - m l / 2  ~- o L ) ( / 2  - k 2 -~- ~ 2 ) / M 1  }.l 
x / / \ L sin ~[-~1 -[- ir(12 - -  k2  + ~ 2 ) ]  

where 

r = W M J L M  2 = a2/a 1 

(2.33) 

(2.34) 

(2.35) 

where u(s, p, q; s'12) denotes the element s ' l  2 of the 2M 2 x 2M2 block matrix 

OM2 D(p)] (2.38) 
Or(P) OM2 ] 

Furthermore, the eigenvalues )t(s, p, q) of K are just the eigenvalues of the 
2M2 x 2M 2 block Toeplitz matrix (2.38) for each p = 1, 2 ..... M1. 

In general it is not possible to explicitly calculate the eigenvalues and 
eigenvectors of (2.38). However, the case M2=  1 is tractable and the 
thermodynamic limit can be obtained. 

2.4. One-Dimensional  Sublatt ices 

With M2 = 1, which corresponds to both the sublattice containing the 
positive charges and the sublattice containing the negative charges being 
one dimensional, (2.38) is a 2 x 2  matrix. The eigenvalues )L(s, p) and 

v(s, p, q; s T ) =  e 2~zil'l(P-1/2)/MI @ U(S, p, q; s'l~) (2.37) 

It follows from (2.30)-(2.32) that the elements of the eigenvectors of K 
have the tensor product structure 

(2.36) 
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corresponding eigenvectors u(s, p) are thus simple to calculate. Taking 
= 0, we find 

~Z(s, p) = i sgn(s) ~1/2e2~O2(P 1/2 MI/2)/Mt (2.39) 

where 

and 

with 

= (TzM~/L)21sin ~r((9~ + irq62) I -2 

) l 1 1)/2)/M1] u(s, p =- -~[ i sgn ( s )  ce_2,,r p (MI+ 

(2.40) 

(2.41) 

behavior of the dimensionless charge charge correlation 

cr(l~, lb) := 2(pT+ +(/~, Ib)--pr+_(la, lb)) 

and 

1 
/~P = fo log(1 + ~e ~2~z ' -  ~) dt (2.44) 

Note that if ~b 2 = 0, which corresponds to the sublattices lying along the 
same line, the pressure is that of a "hard-core" perfect gas. (This result has 
been found previously. (5)) 

Also, from (2.25)-(2.27), these results allow the two-particle correla- 
tions to be evaluated as 

f~ ~eZ~i(l,- zb)t dt 2 PT++(la' /b)= -- 1 + ~e 2~2t 1)~2 (2.45) 

if e2~ti(la lb-~l)tenr(2t-1)~2d t 2 
p~_ (la, l~) = r 1 + ~e2,r(2,_ u~ 2 (2.46) 

From these exact expressions, we deduce that the large-separation 

(2.47) 

is thus given by 

c = Isin ~r(~b~ + irO2)l/sin ~(~bl + ir~2) (2.42) 

From (2.19), the dimensionless pressure 

1 
~P := lira log Z(0, 0) (2.43) 

M1 --~~ m l l  
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is 

- ~ ( { )  (2.48) cr( la, lb ) ~ 2r~2(/a _/b)2 

where ~('{)~< 1. The behavior (2.48) with c~({)= 1 is the criterion for a 
conducting phase. (6) From the above expressions, we find that this criterion 
holds in the present case if and only if ~b, = 1/2, { --- 1 and ~b 2 = 0. The sub- 
lattices are then symmetrically interlaced along the some line. 

3. THE LINE MODEL 

Suppose that the partition function (2.9) is multiplied by (L/M1) 2~ 
and the limit M1 ~ oe is taken. The partition function is then that of a 
system of two sets of interlacing lines of length L parallel to the X axis. The 
first set starts at the points y = n W / M 2  ( n=  1,2 ..... M2) and is available 
to the positive charges, while the second set starts at the points 
y -- (n - ~b2) W/M2 and is available to the negative charges. The boundaries 
at y = 0 and y = W again have surface charges qa and - q a ,  respectively 
(see Fig. 2). The formulas for the grand partition function (2.19) and the 
matrix element (2.27) remain valid in the limit M1 --+ oe [although the label 
p of the eigenvectors now runs from - oe to o% as will be seen below; also, 
the RHS of (2.27) needs to be multiplied by L - I ] .  The operator K is now 
an integral operator acting on vectors of length 2M 2 depending on a 
continuous variable tl, defined by the mapping rule 

K(V(tl) ) = u(t2) (3.1) 

I 
I 

1 ! 

I 
I 

I 

I 

t 
|. 

l 
I 

k 

W 

L 

Fig. 2. The parallel line system. The line closest to but distinct from the lower boundary 
contains negative charges. The lines then alternate between being available to positive and 
negative charges. The lower and upper boundaries contain surface charges qa and -qa ,  
respectively. 
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where 

M2 ff V_k(tl ) u+j(t2)  = Tee 2~r~2 E e2~a(J-k) dtl 
k =~ sin rc[t2 - t~ + i W ~  -2- k + (~2)/LM2] 

(3.2) 

and 

M2 ~1 T) + k ( t l )  
u_j(t2)=Tze2~aO2 ~ e-2~o(j k) dt 1 

k= 1 'a 0 sin ~[t2 - tl - i W ( j  - k - q)2)/LM2] 

(3.3) 

[ j =  1, 2,..., M2; the subscript + ( - )  refers to the top (bottom) half of the 
vector]. 

3.1. The Eigenvalue Problem for the Integral Operator 

We seek the solutions of the eigenvalue equation 

K(v(t~ ; spq) ) = ,~spqu spq) (3.4) 

where the indices spq label the eigenvalues. Since from (3.2) and (3.3) the 
kernel of K has antiperiod 1 in the continuous difference variable t ~ -  t2 , 
we can write 

v(t; spq ) = e - 2"i'~p- ~/2 )x(  sq ) (3.5) 

where p is any integer. The eigenvalue equation (3.4) then becomes the pair 
of equations 

M2 
~re 2 ~ 2  ~ e 2 ~ ( J - k ) I j _ ~ ( p ) x  k ( sq )=2 ,pqX+j ( sq )  (3.6) 

k = l  
M2 

7ze 2~2 ~ e-2~(J-k)Ik_j(p)x+k(sq)=,~spqX_j(sq) (3.7) 
k = l  

where 

f~ e2rCi(p- 1/2)t 

I i ( p )  = sin 7tit + i W ( l +  (~2)/LM2] dt (3.8) 

The integral (3.7) can be evaluated using the expansion 

1 
- - 2 i  ~ e ~l+i~)(2k+~), Re (# )>0  (3.9) 

sin ~(t + i/~) k=o 
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We find that for p~>l ( p < l )  

2 i s g n ( p -  1)e ~W(l+42)(zp !)/LM2, 
['(P)= o, 

1<0(/>~0) 
(3.1o) 

t~>o(l<o) 

Substituting (3.10) in (3.6) gives, for p >~ 1, the eigenvalue equations 

M2 
e-"kYk=?'e  ~JXj (3.1 la) 

k l j + l  

j - -1  

~" e~kXk='/ePJYj (3.11b) 
k--1 

where 

7 = - ( i e  ~2/2zr12 I i spq~ 

Yk = x_k(sq),  

# = zcW(2p - 1)/LM2 + 2rw 

J(k = x +k(sq) 
(3.~2) 

while for p < 1 we obtain 

J 
e ~kYk=--7e-~JXj  

k = l  

M2 
e"k Xk = --,/e~J Yj 

k = j  

(3.13) 

3.2. Eigenvalue Problem for Some Block Toepl i tz  Matr ices  

We note from (3.11) and (3.13) that the eigenvalue problem is that of 
obtaining the eigenvalues and eigenvectors of the real Hermitian block 
Toeplitz matrix 

I OM2 B(p)]  
Br(p ) O~2j (3.14) 

where for p/> 1 (and with x :=e  ") 

l 
O x x 2 

0 0 x 

B ( p ) =  " 

0 0 0 

0 0 0 

X 3 . . .  x M 2 - -  l q  

i 
X 2 . . .  X M2-2  ] 

/ 
0 

0 ; J  

(3.15) 
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while for p < 1 

E10 0 !1 X 1 1 0 " '"  

B ( p ) = -  x -2 x 1 1 ..- (3.16) 

x- -M2+  1 x - - M 2 + 2  x - - M 2 + 3  , . .  

To be consistent with (3.11) and (3.13), the first M2 components of the 
eigenvectors of these matrices will be denoted by Xj, j =  1,..., M2, and 
the second M2 components will be denoted by Yj. 

The structure of (3.14) allows M2 eigenvectors to be found with the 
property 

Xk= YM2+I ~, k =  1, 2,..., M2 (3.17) 

The eigenvalue problem is then that of finding the eigenvalues and eigen- 
vectors of the M2 • M2 Hankel matrix obtained by replacing the kth 
column in (3.15) [or  (3.16) if p < l ]  by the ( M + l - k ) t h  column, 
k = 1, 2 , . ,  M 2 . The remaining M e eigenvectors have the property 

Xk=--YM2+I k, k = l, 2,..., M2 (3.18) 

and correspond to the negative of the eigenvalue found with (3.17). The 
eigenvectors and corresponding eigenvalues can thus be labeled by a 
parameter s, s = + 1, such that 

Xk = sgn(s) YM2+ l -k ,  k = 1, 2 ..... M2 (3.19) 

From (2.23) and (2.25), the property (3.19) implies that the density of 
the positive charges as measured from the charged boundary at y = 0 is the 
same as the density of the negative charges at the same distance from the 
charged boundary at y = W, a feature obvious from the Hamiltonian of 
the system. 

The Case p I> 1. Let us consider first the case p >t 1. From (3.14) 
and (3.15) we see that there are two zero eigenvalues. For the nonzero 
eigenvalues, we see from (3.11a) that 

~ x X k  + 1 = ~ x k  - x Y k  +1 (3.20) 

while it follows from (3.11b) that 

ZZ:=Tx-Iyk + I-- 7Y~ (3.21) 



14 Forrester and Morrow 

where x is defined between (3.14) and (3.15t). Substituting (3.21) in (3.20) 
gives the second-order, linear, constant-coefficient difference equation 

Yk+2 + ( - - x  -- l / x  + x/72) Yk+l + Yk = 0 (3.22) 

This is to be solved subject to the boundary condition 

Y1 = 0 (3.23) 

[choose j =  1 in (3 . l ib)] .  
In addition to (3.22) and (3.23), from (3.21) with k =  1, (3.19), and 

(3.19), we have 

Y~I2 = sgn(s)(7/x) I12 (3.24) 

while from (3.21) with k = M z - 1 ,  (3.20), and (3.24) we have 

X 

Y~2 1 - (x/7) 2 YM2 ~ (3.25) 

These two equations can be used to calculate the eigenvalues. 
Solving the difference equation (3.22) with the boundary condition 

(3.23) in the usual way gives 

Irk = :~ sin[0(k - 1)] (3.26) 

where c~ is a normalization constant and 

e '~  �89 1~x-x~7  z + [(x + 1 / x - x / 7 2 ) z - 4 ]  1/2 } (3.27) 

The eigenvalues ~ are thus given in terms of 0 by 

xl/2 
7 = • (x + 1/x - 2 cos 0) 1/2 (3.28) 

so we must find (M 2 - 1) distinct values of 0. These values are specified by 
(3.24)-(3.26), which give the equation 

sin0 
sin(M2 - 2)0 [_ \sin(M2 - 1)0 = x (3.29) 

Consideration of the graph of the left-hand side of (3.29) (see Fig. 3) 
shows that for 0 < 0 < 7z there are M 2 - 1 solutions for x ~< Xo, where 

Xo M 2 - 2  1 -  (3.30) 
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Fig.  3. G r a p h  o f  the  e q u a t i o n  

x = [ s i n ( M  2 --  1 ) O / s i n ( M  2 - -  2 ) 0 ]  [1  --  (sin O / s i n ( M  2 - 1 )0) 2 ] 

for  M 2 = 7 a n d  0 ~< 0 ~< zr. In  gene ra l ,  if  0 ~< x ~< xo,  t he r e  a r e  M 2 - 1 so lu t ions ,  whi le  if x > Xo, 

t he r e  a r e  M 2 -  2 so lu t ions .  

and M 2 -  2 solutions for x > x o. For  x > Xo, the remaining 0 value is given 
by 0 = iv, where 

sinh(M2 2)v 1 \ s i n h ( M 2 -  1)v --=x (3.31) 

Fur thermore ,  the real solutions 0~, 02,..., 0M2_ 1 lie in the intervals 

rc(k - 1 ) 7ok 
- -  < Ok < - -  k = 1, 2,..., M2 - 1 (3.32) 
M 2 -  1 M 2 -  1' 

and are thus uniformly distr ibuted on the interval 0 to ~. F r o m  (3.24) and 
(3.26) the two eigenvalues implies by (3.31) are 

sinh v ( M 2  - 1 ) 
7 = i x  (3.33) 

sinh v 

Hence,  in summary ,  we have that  the eigenvectors x(sq) in (3.5) have 
the componen t s  

Xk = c~ sin O q( M 2  - k )  = 7 ( x -  1Yk + ~ - Yk  ) (3.34a) 

Yk = sgn(s) e sin O q ( k -  1) (3.34b) 

where k =  1,..., M2, q = 1 ..... M 2 -  1, 

X "= e - ~ W ( 2 p -  1)/LM2 2rc~rW/M2 (3.34c) 

822/63/1-2-2 
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Xk denotes the components in the top half, Yk denotes the components in 
the bottom half, and c~ denotes the normalization. The allowed values of Oq 
are given by (3.29). The corresponding eigenvalues are 

I~spq = 27zix O2y (3.35a) 

= 2rci sgn(s)x 1 -~2 sin Oq(M 2 - -  1 ) (3.35b) 
sin O q 

2nix 1/2 - ~2 
= +-- (x + 1 / x -  2 c o s  Oq) 1/2 (3.35c) 

where the choice of sign in (3.35c) is determined by (3.35b). 

T h e  Case  p < 1. For p < 1, the problem is to find the eigenvalues 
and eigenvectors of the matrix (3.14) as specified by (3.16). Comparison of 
(3.15) and (3.16) shows that the components of the eigenvectors and the 
eigenvalues are closely related to those found above for p > 1 and 7 r 0. 

Explicitly, by making the replacements 

M2 --* M2 + 1, x ~ x  -1, 7 ~  - T x  -1, Xj.--~ Yj (3.36) 

the eigenvalue problem solved for p > 1 and 7 r 0 is mapped to the present 
problem, provided we first delete the zero entries (Y1 =XM2 =0)  of the 
eigenvectors of the former. Thus, from (3.34) the eigenvectors x(sq) in (3.5) 
have the components 

Xk = e sin Oqk (3.37a) 

Yk = c~ sgn(s) sin Oq(M 2 - k + 1 ) 

= ~y sgn(s)[sin O q k - x  -1 s in  O q ( k -  1)]  (3.37b) 

where the allowed values of Oq are given by (3.29), with the replacements 
.(3.36). The formula (3.35c) for the eigenvalues remains unchanged. 

3.3. The Thermodynamic Limit 

3.3.1. The Strip Free Energy. The free energy per unit length of 
the strip, f w ,  is given in terms of the grand partition function by the 
formula 

flfw = ( ( N ) / L )  log ( - lim 1 log 2(0, O) 
L ~ o o  L 

:= ( ( N ) / L )  log ( -- flP~ 
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where ( N )  is the average number of particles. From (2.19) (with p now 
ranging from - o o  to oo) the grand partition function and thus the 
pressure are given in terms of the eigenvalues of the operator K. The 
functional dependence on L for the eigenvalues is in the ratio ( 2 p -  1)/L. 
Hence, taking the logarithm of the grand partition function gives a 
Riemann approximation to a definite integral, with p /L  becoming a 
continuous variable, t say. Thus 

Z ,  e -(1 2~2)s 
ds tiPs = -27rrr W +  ~ log 1 + ( 2 ~ )  2 2 cosh s -  2 cos Oq 

q = l  - - co  

(3.38) 

where the asterisk denotes that for s > 0  the sum ranges from q = 1 to 
M z - 1, s=2rcWt /M2 ,  and Oq is given by (3.29) for t > 0  and by (3.29) with 
the replacements (3.36) for t < 0. 

Next we consider the limits 

W, M 2 ---* o% W/M2 = a2 (fixed) (3.39) 

so that a two-dimensional domain is obtained. Let us suppose that a > 0. 
Then x < l  for t > 0  [recall (3.34c)], x - l > l  for - r  and x - l < l  
for t < - r  From (3.30), in the limit M2 --* oo the critical value for a com- 
plex solution of (3.29) is x0 = 1. Thus for t > 0 all solutions of (3.29) are 
real and similarly for t < -rr. However, for - a  < t < 0 there is a complex 
solution of (3.29) with corresponding eigenvalues 

2 = +_2nix ~2 sinh vM2 (3.40) 
sinh v 

[make the replacements (3.36) in (3.33) and use (3.35a)]. From (3.31), 
with x replaced by l /x ,  we see that in the limit M2 --* oo 

v = log x (3.41) 

so for M 2 large the eigenvalue (3.40) behaves as 

2 ~ ++_nix- ~M2 + ~2)/sin h v (3.42) 

Separating this eigenvalue out of (3.38) shows that in the bulk pressure 

1 
f lPB= lim - ~ P s  (3.43) 

W ~ C O  

the first term in (3.38), which depends explicitly on the surface charge, 
cancels exactly the contribution from (3.42). 
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We have seen that the real values of Oq a r e  uniformly distributed in the 
interval 0 to ~. Thus, substituting the second term of (3.38) in (3.43) gives 

/~P~ -~ 2(rca2) 2 fo dO f_ ds log 1 + (2~)  2 2(cosh s -  cos 0) (3.44) 

With ~b2 = 1/2 and a rescaling of if, this result agrees with the expression 
derived by Cornu and Jancovici (2) [Eq. (3.2)] from Gaudin's (1) conjectured 
exact result for the bulk pressure of the lattice model of Section 2.1 at 
F = 2 .  

The virial expansion for P8 can be obtained by expanding the 
integrand in (3.44) near s = 0 and 0 = 0. The resulting integral is essentially 
that studied by Gaudin (1) [Eqs. (50)-(62)] for the lattice model. Using 
Gaudin's working, we obtained the leading-order behavior 

/ / P B ~ P -  P ~ +  ... (3.45) 
2 2log p 

which is identical to that of the lattice model. 

3.3.2.  Re la t ionsh ip  to  a T h e o r e m  of  W i d o m .  From (2.15), 
and the working of the above sections, the strip pressure can be written in 
the form 

/ / P , = - 2 ~ 2 W +  f_ logdet lzM2+~ Br(t  ) OM2jjdt (3.46) 

where 

x~_e 2~a2(, + o-) (3.47) 

and B(t) is given by (3.15) for t > 0  and by (3.16) for t<0 .  The sum of the 
matrices in (3.46) gives a block Toeplitz matrix. In the special case a = 0, 
and assuming t r 0, the criteria necessary for the validity of a theorem of 
Widom (ref. 7; see also ref. 8) regarding the asymptotic behavior of the 
determinant of block Toeplitz matrices can be verified. Application of the 
theorem in (3.46) then gives the result (3.44). However, for ~ r  and 
- o < t < 0  we have noted that x - l >  1. This causes the criteria for 
Widom's theorem to be violated (the matrix elements no longer form a 
convergent Fourier series) and indeed the asymptotic behavior of the 
determinant [due to the appearance of the complex solution in (3.29)] is 
no longer that given by Widom's theorem. 
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3.4. The Correlat ions near the Charged Wall  

The calculation of the correlation functions in the thermodynamic 
limit requires the large-M2 behavior of the eigenvectors. For Oq real (which, 
as we have seen, is all cases except for a single pair of eigenvalules when 
- ~  < t < 0), Oq tends to the continuous variable 0, 0 ~ 0 ~< 2re. Further- 
more, a simple calculation gives that the normalization constant e behaves 
a s  

0:2~ 1/M 2 (3.48) 

It remains to consider the complex solution Oq= iv of (3.29). From 
(3.37) and (3.41), for large M2 the corresponding eigenvectors have the 
components 

Xk = ~ sinh(k log x) (3.49a) 

Yk = sgn(s) ~x (M2+ ~-k) (3.49b) 

where 02 is the normalization constant. The large-M2 behavior of 02 is easily 
seen to be 

~2 x2(M2+~)(x 2_1)  (3.50) 

so consequently, for fixed k, 

Xk~O (3.51a) 

Yk ~ sgn(s)(x 2_ 1)l/2xk (3.51b) 

Substituting the above asymptotic behaviors into the formula (2.27) 
for the matrix elements allows the correlations near the charged boundary 
at y = 0 to be calculated. Substituting the evaluation of the matrix elements 
into (2.23), (2.25), and (2.26), we then find 

i , ,  2~ 2 f~  dt ~ (Xk(t, 0)) 2 
p + t K ) = ~ - j  ~ J0 dO (1/121 )2 + ~2 (3.52a) 

, , ,  2~ 2 c ~ at f~ (Y~(t, 0)) 2 
p_ tK)=- -~ - j_~  vd0(1 /12 l )z+~2  

/ ,  0 

+ J ( fz~(t))2 dt (3.52b) 

p++r (lx - 12; kl,  k2) = - oo dt e -27ti(lz-t2)l 

f~ xk,(t,  o) x~2(t, o) 2 
x dO (1/i;~1)2+~2 (3.52c) 
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pr_ _(ll - / 2 ;  k l ,  k 2 ) =  - dt  e -2~i(lj -12)t 
~o  

f f  Yk1(t, O) Yk2(t, O) 
x dO (1/l~])2+ff 2 

0 d t  2 

(5) f2 py+ - ( /1  - - /2 ;  kl, k2) = dt  e -2ni(ll - h ) '  

xf:do(1/I,~l)x~,(t,o)(1/1 zf ) ~ + ~ar~(t' o) 

(3.52d) 

(3.52e) 

where 

I~1 I-x-~ sin Ok - sin O(k - 1 )], t > 0 (3.53a) 
Xk(t, O) := ~sin Ok, t < 0 

~sin O(k -  1), t>O (3.53b) 
Yk( t 'O) :=( l? l [ s inOk-x -~s inO(k-1)] ,  t < 0  

ITk(t) :=xk(x 2 _  1)1/2 (3.53c) 

x is given by (3.47) and 7 is given by (3.28). 
The integration over 0 can be explicitly carried out in all the above 

expressions. However, our primary remaining task is to determine the 
phase of the system in the vicinity of the wall and this calculation does not 
require that the integration over 0 be performed until a further simplifica- 
tion is made. 

Using (3.52) and (3.53), tabulations of the density profiles are given in 
Table I for a = 0 and rr = 1. 

3.4.1. The  Bulk C o r r e l a t i o n s .  In the limit k ~ Go, it is easy to 
show from (3.52) and (3.53) that 

p+(k)- ,p+ and p _ ( k ) ~ p  (3.54) 

where 

1 1 ~(/~P~) 
p+=p = ; p = ; f f  (3.55) 0~ z z 

and riPe is given by (3.44) (this limiting behavior is also evidenced in 
Table I). Also, the limits kl, k2--* c~ give formulas for the two-particle 
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Tablel. Density Profiles with ~ = 0 . 1 , ~ z = 0 . 5 ,  and 
Surface Charge a As Indicated ~ 

21 

k [p+(k)-p+]/p. [p_(k)-p ]lp_ 

o-=0 
1 -0.012 -0.429 
2 0.000046 - 0.056 
3 0.00045 - 0.011 
4 0.0002 - 0.0025 

o ' = 1  

1 -0.148 7.65 
2 -0.032 0.198 
3 - 0.0079 0.03 
4 O.002 O.006 

c, Recall that a line containing negative charges is closest to the boundary, which explains the 
large excess [p _ ( 1 ) - p ]/p. 

correlations which only depend on the difference k l - k 2 ,  as expected. 
These limiting formulas are equivalent to those presented by Cornu  and 
Jancovici  (2) [Eqs. (3.4) and (3.5)]. 

3 .4 .2 .  The  C o n t i n u u m  Limi t .  In the limit 

a2,  ~ ~ O, ~/a2 = # (fixed) (3.56) 

it has been shown b y - C o r n u  and Jancovici (z3) that the Cou lomb  gas at 
F =  2 is equivalent to the free Fermi field. The two-particle correlat ion 
functions (3.52c)-(3.52e) tend to well-defined quantities in this limit. It can 
readily be verified that  the expressions obtained agree with those calculated 
by Cornu  and Jancovici  ~ [Eqs. (3.7)] for the cont inuous model  near a 
charged wall. 

3.5 .  S u m  Rules  

It is s traightforward to check from (3.53) that  the components  of the 
eigenvectors have the or thonormal i ty  proper ty  

k = l  

and similarly for Y k ( t ,  0) .  Also, 

Yk(t, O) f~k(t) = 0 (3.58) 
k 1 
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and 

(Yk(t)) 2 = 1 (3.59) 
k = l  

The identity (3.57) is a continuous version of the orthonormality property 
of the original eigenvectors of the matrix (3.14). As noted by Cornu and 
Jancovici, (2) these properties and the structure of (3.52c)-(3.52e) imply the 
validity of the compressibility and perfect screening sum rules (see, e.g., 
ref. 2 for the explicit statement of these sum rules). 

Another known sum rule (see, e.g., ref. 9) of relevance to the present 
system states that the excess charge density near the charged boundary 
should exactly cancel the surface charge. If the system were continuous, the 
sum rule would read 

fo [p+(y)- p ( y ) ] d y = - a  (3.60) 

For the present line model at large distances from the wall that excess 
charge density at any line alternatives between qp/2 and -qp/2, so the 
summation which should replace the integration on the left-hand side of 
(3.60) is not properly defined. However, we can show that 

~, [p+(k)-p_(k)]=-a+c (3.61) 
k- -1  

where c is independent of a. The sum of the left-hand side is a particular 
ordering of the original conditionally convergent summation. 

Finally, we will show that for large I l l -  12 l, 

p + + (I1 - -  1 2 ,  kt, k2) + p - (ll -- 12, kl,  k2) - 2p + (ll - 12, kl, k2) 

f(kl, k2) 
[2n(ll _ la)] 2 (3.62) 

where 

~ f(k12, k2)= 1 (3.63) 
k l = l  k2=1 

This is the criterion for a conducting phase for a two-dimensional Coulomb 
gas in a half-space/1~ 

The results (3.62) and (3.63) follow from (3.52c)-()3.52e) by first 
integrating by parts at the discontinuity at t = 0. The integrations over 0 
can now be performed using contour integration (by integrating around an 
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inifinite rectangle:  d o w n  the line Re z = - z  to the real axis, across  to ~, 
then up the line Re z = ~) to give 

p~__(/~- 12, k,, k2) 

pr+ (11_12,  k l , k 2 ) ~  

pT+ +(/1 -- [2, k l ,  k2) 

where  

1 
[ x 0 ( X o l _ ~ ) c ~ + k 2  2]2 (3.64a) 

[27r(/1 - 12)] 2 

1 
[ 2 ~ ( / i - / 2 ) ]  z ( e -~  _ X o l ) ( X o  I _ ~)XoZC~2~l+2k2 2 

(3.64b) 

1 
[-2~z(11_12)]2 [Xo(0C 1--Xol)C~kl+k212 (3.64C) 

X 0 = e - 2 r c a 2 o  (3.65) 

and  

~ = b -  (b 2 -  1) ~/2, b =  1 I x 0  + X o l  + (27rr 2 ] (3.66) 

Since tc~J < 1, the s u m m a t i o n s  over  k~ and  k2 are s imply  g e o m e t r y  series, 
which combine  to give (3.63). 
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